- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chiolo, Irene (2)
-
Lopes, Massimo (2)
-
Merigliano, Chiara (2)
-
Palumbieri, Maria Dilia (2)
-
Doerdelmann, Cyril (1)
-
Frey, Joël (1)
-
González-Acosta, Daniel (1)
-
Grosse, Robert (1)
-
Krietsch, Jana (1)
-
Kuster, Danina (1)
-
Sanchi, Andrea (1)
-
Stoy, Henriette (1)
-
Ulferts, Svenja (1)
-
Welter, Bettina (1)
-
von Känel, Thomas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nuclear actin filaments (F-actin) form during S-phase and in response to replication stress to promote fork remodeling and repair. In mild replication stress conditions, nuclear actin polymerization is required to limit PrimPol recruitment to the fork while promoting fork reversal. Both short and long filaments form during this response, but their function in the nuclear dynamics of replication sites was unclear. Here, we show that replication centers associated with long nuclear actin filaments become more mobile than the rest of the forks, suggesting relocalization of replication sites as a response to prolonged fork stalling and/or fork breakage, even in response to mild replication stress.more » « lessFree, publicly-accessible full text available November 22, 2025
-
Palumbieri, Maria Dilia; Merigliano, Chiara; González-Acosta, Daniel; Kuster, Danina; Krietsch, Jana; Stoy, Henriette; von Känel, Thomas; Ulferts, Svenja; Welter, Bettina; Frey, Joël; et al (, Nature Communications)Abstract Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments.more » « less
An official website of the United States government
